CHROM. 21 293

COMPARISON OF SOLVENT MODELS FOR CHARACTERIZING STA-TIONARY PHASE SELECTIVITY IN GAS CHROMATOGRAPHY

SALWA K. POOLE, BRIAN R. KERSTEN and COLIN F. POOLE* Department of Chemistry, Wayne State University, Detroit, MI 48202 (U.S.A.)

SUMMARY

Two experimental approaches to the measurement of stationary phase selectivity using the thermodynamic models proposed by Rohrschneider-McReynolds and Golovnya-Poole are tested theoretically and experimentally to establish their reliability. The retention index difference of Rohrschneider-McReynolds is demonstrated to incorrectly determine selectivity since this difference is largely determined by the difference in solubility of the n-alkane retention index markers in the polar and non-polar phases. Also, the assumption that the contribution of dispersion to the index value is equivalent to the retention of a hypothetical *n*-alkane on squalane with the same retention time as the test solute on the polar phase fails to take account of the differences in the free energy of solution per index unit on the compared phases. These inconsistencies are not found when differences in the partial molar Gibbs free energy of solution for a series of test solutes are used to determine stationary phase selectivity. A general equation relating the free energy differences to retention index differences is derived and indicates that there is no simple relationship between the two models which, therefore, predict very different selectivity changes for the same test solutes for a group of compared phases. It is concluded that the ordering of stationary phases with respect to their ability to interact selectively with a particular test solute should be determined from free energies of solution (determined from gas-liquid partition coefficients corrected for interfacial adsorption) and that the use of the McReynolds phase constants be abandoned for this purpose.

INTRODUCTION

The selectivity of the chromatographic system and thus the ease of obtaining a particular separation in gas-liquid chromatography (GLC) is determined primarily by differences in solute vapor pressures and the strength of solute-solvent interactions in the liquid phase^{1,2}. To a first approximation at normal column operating pressures and sample sizes it can be assumed that samples behave ideally in the gas phase with the inert gases commonly used as carriers. A theoretical understanding of selectivity differences between individual solvents is unavailable and must await the development of exact descriptions of the intermolecular forces that exist between complex molecules as are encountered in gas chromatography (GC). A pragmatic solution to this problem has been found by adopting several largely empirical experimental approaches to characterize the solvent properties of stationary phases used in GC. The most widely used approach is that of Rohrschneider as later modified by McReynolds (see refs. 3-11). In this instance solvent selectivity was quantitatively determined by the differences in the retention index values of a series of test solutes chosen to express particular solute-solvent interactions for the stationary phase to be characterized with respect to the properties (retention index values) for the same solutes measured on squalane as a non-polar reference phase. Rohrschneider-McReynolds phase constants are commonly used by vendors of chromatographic supplies to define the application areas for new phases and by users to identify phases having identical (or similar) properties. In spite of the more or less universal adoption of the Rohrschneider-McReynolds phase constants it has been suggested that these values may be unreliable due to a combination of theoretical and practical deficiencies in the protocol used for their calculation¹⁰⁻¹⁷. Briefly summarized these problems can be stated to be: (1) a failure to account for the contribution of interfacial adsorption, particularly for the retention index standards, as a significant retention mechanism; (2) the phase constants are composite terms embodying both the contribution of selective solutesolvent interactions and solubility differences of the *n*-alkane retention index markers on the compared phases (the latter contribution tending to dominate); and (3) there is insufficient retention of some test solutes on certain phases to permit the determination of the phase constants with the required degree of accuracy.

An alternative approach to that of Rohrschneider–McReynolds has been adopted by Golovnya–Poole (see refs. 10, 11, 13, 16 and 18). These workers defined differences in stationary phase selectivity as equivalent to the differences in the partial molar Gibbs free energy of solution for a series of test solutes on the phases to be characterized and on a reference phase exhibiting minimal selectivity. In most cases the same test solutes as used by McReynolds have been used in these studies as well as the adoption of squalane as the reference phase exhibiting minimal selectivity. In general there are substantial differences between the ranking of individual phases by their ability to interact with a particular test solute using phase constants derived by the two different approaches. The purpose of this paper is to demonstrate why this difference arises based on fundamental and experimental considerations, to show how the two selectivity scales can be interrelated, and to provide a corrected set of experimental data to be used to test new hypotheses that may be developed in the future.

EXPERIMENTAL

General experimental conditions and sources of phases and standards, etc. are identical with those reported elsewhere^{12,13}. Common abbreviations and trade names for stationary phases are identified in Table I. All GC measurements were made by headspace injection of test solutes under infinite dilution conditions conforming to the linear portion of the sorption isotherms. All peak shapes were symmetrical and there was no dependence of retention on sample size in the measurement region. On-column silanization of packings prepared from non-polar phases was used as required to control peak tailing¹³. The column temperature was $80.8^{\circ}C (\pm 0.2^{\circ}C)$ and the column pressure drop less than 1 atm (determined to ± 1 mmHg) in all cases. Nitrogen was used as carrier gas. Retention volumes are uncorrected for gas phase non-ideality since

TABLE I

GAS-LIQUID PARTITION COEFFICIENTS FOR MCREYNOLDS TEST SOLUTES ON SOME REPRESENTATIVE STATIONARY PHASES AT 80.8°C

The uncertainty in the measurements is given by the standard deviation in parenthesis. X' = benzene, Y' = butanol, Z' = 2-pentanonc, U' = nitropropane, S' = pyridinc, H' = 2-methy-2-pentanol, J' = iodobutane, K' = 2-octyne, L' = dioxane and M' = cis-hydrindane.

Stationary phase ^a	Gas-liquid partition coefficient									
	X	Y'	Z'	U'	S	H'	J'	K	L'	M'
Squalane	80.8	47.8	67.2	80.9	114.7	111.9	310.8	420.1	81.4	1394.1
	(0.5)	(1.2)	(0.8)	(1.0)	(2.2)	(1.1)	(2.9)	(4.4)	(0.7)	(15.0)
OV-17	77.6	69.6	94.8	198.4	196.9	104.9	258.2	312.4	129.2	688.8
	(1.0)	(1.0)	(0.8)	(10.6)	(1.2)	(2.5)	(3.7)	(5.3)	(3.2)	(14.1)
OV-105	61.5	87.0	78.9	126.3	118.9	110.1	186.2	256.9	84.7	575.0
	(3.0)	(8.2)	(2.5)	(3.1)	(3.5)	(3.7)	(5.2)	(7.4)	(2.3)	(14.5)
OV-330	88.9	199.5	111.9	350.4	291.2	197.2	247.3	247.2	161.0	432.9
	(0.7)	(3.7)	(0.9)	(2.6)	(3.0)	(1.3)	(4.9)	(4.7)	(5.7)	(2.9)
OV-225	69.1	133.7	129.6	378.6	256.7	152.2	197.4	167.2	148.1	320.4
	(0.1)	(2.4)	(1.4)	(3.8)	(4.5)	(1.2)	(1.6)	(2.7)	(9.6)	(3.9)
QF-1	45.6	53.4	136.8	274.1	146.9	85.9	118,4	100.2	102.2	228.0
	(1.1)	(4.2)	(4.0)	(7.9)	(5.0)	(3.2)	(4.0)	(3.5)	(1.7)	(7.0)
Carbowax 20M	97.6	292.1	114.2	483.6	401.2	212.9	204.3	180 3	199.6	264.1
	(0.4)	(4.8)	(0.5)	(1.9)	(4.6)	(1.5)	(2.0)	(3.9)	(0.7)	(3.3)
DPAT	80.2	583.3	177.0	479.2		425.0	143.4	74.8	229.8	130.8
	(12.9)	(14.1)	(5.3)	(12.0)		(11.1)	(2.9)	(2.5)	(6.0)	(1.7)
DEGS	59.4	240.2	97.9	372.8	~	186.9	89.9	68.7	236.1	86.1
	(2.7)	(6.2)	(1.8)	(12.2)		(4.8)	(3.6)	(2.7)	(4.5)	(2.3)
BAT	37.6	658.4	203.6	304.7		476.7	74.2	38.2	406.3	79.0
	(0.8)	(25.0)	(9.5)	(12.6)		(17.9)	(2.5)	(1.0)	(9.6)	(4.1)
sBAT	38.3	795.8	249.1	355.8	-	553.9	74.4	38.7	505.2	65.2
	(2.7)	(15.0)	(3.1)	(9.0)		(11.2)	(2.3)	(2.8)	(11.7)	(3.6)
TCEP	63.4	205.0	133.7	543.1	424.9	139.7	92.3	62.6	245.9	68.1
	(2.4)	(1.3)	(2.4)	(3.4)	(3.0)	(1.0)	(2.3)	(2.4)	(3.3)	(0.5)
OV-275	40.9	110.6	67.7	313.1	225.5	65.2	49.6	25.5	126.4	37.6
	(1.2)	(4.4)	(3.0)	(13.1)	(7.8)	(3.1)	(2.4)	(1.2)	(4.7)	(3.1)

^a Squalane = 2,6,10,15,19,23-hexamethyltetracosane, OV-17 = poly(phenylmethylsiloxane), OV-105 = poly(cyanopropylmethylphenylmethylsiloxane), OV-330 = dimethylsilocone/Carbowax copolymer), QF-1 = poly(trifluoropropylmethylsiloxane), Carbowax 20M = poly(ethylene glycol), DPAT = di-*n*-propylammonium thio nate, DEGS = poly(diethyleneglycol succinate), BAT = n-butylammonium thiocyanate, sBAT = sec-butylammonium thiocyanate, TCEP = 1,2,3-tris(2-cyano-ethoxypropane) and OV-275 = poly(dicyanoallylsiloxane).

these corrections were found to be small for the experimental conditions employed using the few accurately determined virial coefficients available¹⁹.

Gas-liquid partition coefficients were calculated by linear extrapolation of plots of $V_N^*/V_L vs. 1/V_L$ based on eqn. 1:

$$\frac{V_{\rm N}^{\rm x}}{V_{\rm L}} = K_{\rm L} + (A_{\rm GL}K_{\rm GL} + A_{\rm LS}K_{\rm GLS})\frac{1}{V_{\rm L}}$$
(1)

where V_N^* is the net retention volume per gram of packing; V_L the volume of liquid phase per gram of packing; K_L the gas-liquid partition coefficient; A_{GL} the gas-liquid interfacial area; K_{GL} the coefficient for adsorption at the gas-liquid interface; A_{LS} the gas-liquid interfacial area; and K_{GLS} the coefficient for adsorption at the support surface.

Values for the gas-liquid partition coefficients of test solutes are given in Table I together with the uncertainty in their determination. These values supercede those given in ref. 13 which have been corrected for an error in the extrapolation procedure which affected the accuracy of some K_L values. The partition coefficients for the *n*-alkane and 2-alkanone retention index markers were fitted to eqn. 2:

$$\log K_{\rm L} = A + Bn \tag{2}$$

where B is the slope of the plot of log K_L vs. carbon number n and A is a constant for any particular phase. A gives the intercept for n = 0 on the same plot and n the number of carbon atoms for the n-alkanes and the number of carbon atoms minus 2 for the 2-alkanones. The coefficients obtained by linear regression are summarized in Table II.

The retention index for each test solute was determined from the adjusted retention time using the standard procedure¹. Retention index values corrected for interfacial adsorption were calculated using eqn. 3:

$$I_{\rm P}^{\rm C}({\rm X}) = 100Z + 100 \frac{\log K_{\rm L}^{\rm X} - \log K_{\rm L}^{\rm Z}}{\log K_{\rm L}^{\rm Z+1} - \log K_{\rm L}^{\rm Z}}$$
(3)

where $I_{P}^{C}(X)$ is the retention index for solute X corrected for interfacial adsorption on

TABLE II

COEFFICIENTS FOR CALCULATING PARTITION COEFFICIENTS FOR n-ALKANES AND 2- ALKANONES (EQN. 2)

Stationary phase	n-Alkanes		Correlation	2-Alka	inones	Correlation	$\Delta G_{\mathbf{K}}^{0}(CH_{2})^{\mathbf{P}}$		
	В	A	(r^2)	B	A	(r^2)	n-Alkanes	2-Alkanones (cal/mol)	
Squalane	0.361	-0.4180	1.000	0.358	0.7673	1.000	- 585	- 579	
OV-17	0.325	-0.5596	0.999	0.317	1.0517	0.999	-525	-513	
OV-105	0.314	-0.3339	1.000	0.311	0.9841	0.999	- 508	-503	
OV-330	0.302	-0.6023	1.000	0.298	1.1844	0.999	-488	482	
OV-225	0.293	-0.6556	1.000	0.284	1.2894	0.999	-469	459	
QF-1	0.262	-0.3152	1.000	0.270	1.3499	0.999	-424	-437	
Carbowax 20M	0.264	-0.5754	0.999	0.265	1.2939	0.999	-427	-428	
DPAT	0.228	-0.6058	1.000	0.239	1.5658	0.999	-369	- 386	
DEGS	_	_	<u> </u>	0.218	1.3653	0.999	_	-352	
BAT	0.223	-0.8211	0.999	0.215	1.6994	0.997	-361	347	
sBAT	0.188	-0.5733	0.998	0.204	1.8350	0.998	-304	-330	
TCEP	_	_	_	0.199	1.5552	0.999	_	- 322	
OV-275	-	—		0.180	1.3233	0.998		-330	

phase P; K_L^X the gas-liquid partition coefficient for solute X; K_L^Z the gas-liquid partition coefficient for an *n*-alkane with Z carbon atoms eluting immediately before solute X; and K_L^{Z+1} the gas-liquid partition coefficient for an *n*-alkane with Z + 1 carbon atoms eluting after solute X.

When the 2-alkanones were used as the fixed points on the retention index scale, eqn. 3 was used with Z equal to the number of carbon atoms minus 2. Phase constants according to McReynolds were calculated from retention index differences using eqn. 4:

Phase constant =
$$\Delta I^{X} = I^{X}_{P} - I^{X}_{SQ}$$
 (4)

where I_P^x is the retention index for test solute X on stationary phase P; and I_{SQ}^x the retention index for test solute X on squalane.

Phase constants corrected for interfacial adsorption or based on the 2-alkanone retention index scale were calculated by substituting the appropriate values of the retention index into eqn. 4.

The partial molar Gibbs free energy of solution, ΔG_{K}^{o} , for the test solutes was calculated from the gas-liquid partition coefficient, K_{L}^{x} , according to eqn. 5:

$$(\Delta G_{\mathbf{K}}^{\mathrm{o}} \mathbf{X})^{\mathbf{P}} = -2.3 R T_{\mathrm{C}} \log K_{\mathrm{L}}^{\mathrm{X}}$$
(5)

where $(\Delta G_{\mathbf{K}}^{\circ} \mathbf{X})^{\mathbf{P}}$ is the partial molar Gibbs free energy of solution of solute X on phase **P**; *R* the universal gas constant (1.987 cal mol⁻¹ K⁻¹); and $T_{\mathbf{C}}$ the column temperature (K).

The difference in free energies for solute X on two compared phases is given by eqn. 6

$$\partial (\Delta G_{\mathbf{K}}^{\mathrm{o}} \mathbf{X})_{\mathrm{SO}}^{\mathrm{P}} = (\Delta G_{\mathbf{K}}^{\mathrm{o}} \mathbf{X})^{\mathrm{P}} - (G_{\mathbf{K}}^{\mathrm{o}} \mathbf{X})^{\mathrm{SQ}}$$
(6)

where $\partial (\Delta G_{\mathbf{K}}^{\circ} \mathbf{X})_{\mathbf{SQ}}^{\mathbf{P}}$ is the difference in partial molar Gibbs free energy of solution for solute X on stationary phase P and squalane. The partial molar Gibbs free energy of solution for a methylene group, $\Delta G_{\mathbf{K}}^{\circ}(\mathbf{CH}_2)^{\mathbf{P}}$ was calculated according to eqn. 7:

$$\Delta G_{\rm K}^{\rm o}({\rm CH}_2)^{\rm P} = -2.3 R T_{\rm C} B_{\rm P} \tag{7}$$

where $\Delta G_{K}^{\circ}(CH_{2})^{P}$ is the partial molar Gibbs free energy of solution for a methylene group on phase P; and B_{P} the slope of log K_{L} vs. carbon number for the *n*-alkane or 2-alkanones on phase P. Values for the variable B_{P} together with $\Delta G_{K}^{\circ}(CH_{2})^{P}$ are given in Table II.

RESULTS AND DISCUSSION

A good starting point is the thermodynamic definition of the phase constant as proposed by Rohrschneider^{3,4}. With respect to Fig. 1, which shows a plot of log K_L against carbon number for a homologous series of *n*-alkanes on squalane and Carbowax 20M, used to determine the phase constant for solute X (experimental data for dioxane are used in the figure shown). The retention index value for solute X, by definition, is equal to 100 times the carbon number of the hypothetical *n*-alkane that

Fig. 1. Plot of the logarithm of the gas-liquid partition coefficients for *n*-alkanes as a function of carbon number on Carbowax 20M ($\frac{3}{6}$) and squalane (\Box). The test solute, X, was dioxane. The free energy scale is plotted on the right without units and is related to K_L through eqn. 5.

co-elutes with solute X on both phases and the stationary phase selectivity constant to the difference in retention index values as defined by eqn. 4. In thermodynamic terms Rohrschneider identified the difference in retention index values, ΔI , with the difference in the partial molar Gibbs free energy of solution for solute X on the polar phase and squalane as a non-polar reference phase according to eqn. 8:

$$\Delta I^{\mathbf{R}} = 100 \frac{\left(\Delta G^{\circ}_{\mathbf{K}} \mathbf{X}\right)^{\mathbf{P}} - \left(\Delta G^{\circ}_{\mathbf{K}} \mathbf{X}\right)^{\mathbf{x}}}{\Delta G^{\circ}_{\mathbf{K}} (\mathbf{CH}_2)^{\mathbf{P}}}$$
(8)

where ΔI^{R} is the calculated value of ΔI^{C} according to Rohrschneider and $(\Delta G_{K}^{o}X)^{*}$ is the partial molar Gibbs free energy of solution for a hypothetical *n*-alkane co-eluting with solute X on squalane and having the same carbon number as the *n*-alkane used to calculate $(\Delta G_{K}^{o}X)^{*}$ on the polar phase using eqns. 2 and 5. The correctness of eqn. 8 is easily tested by inserting experimental values into eqn. 8 and comparing the calculated phase constants with those determined experimentally, Table III. As can be seen there is excellent agreement between the calculated, ΔI^{R} , and experimental values of ΔI corrected for contributions to retention arising from interfacial adsorption, ΔI^{C} . Uncorrected values of ΔI , calculated directly from adjusted retention times as is normally done, show substantial variation from the calculated values for the polar phases. For the most polar phases investigated, DEGS, TCEP and OV-275 the *n*-alkane retention index markers are retained predominantly by interfacial adsorption and appropriate values for ΔI^{C} cannot be calculated. This problem is generally associated with the properties of the *n*-alkanes as can be seen by contrasting the plots of Figs. 2 and 3 which represent data for *n*-decane and 1-nitropropane on a number of

TABLE III

Stationary phase	Index difference	Test solute							
		Benzene	B utanol	2-Pentanone	Nitropropane	Dioxane			
OV-17	ΔΙ	111	156	160	239	179			
	∆I ^c	110	158	158	235	177			
	∆I ^R	110	158	158	236	177			
OV-105	ΔI	34	145	91	134	77			
	ΔI ^C	32	143	89	132	75			
	∆I ^R	32	143	89	132	75			
OV-330	ΔI	206	381	261	404	290			
	∆I ^C	201	380	256	398	285			
	⊿ <i>1</i> ^R	201	380	256	399	285			
OV-225	ΔΙ	213	370	326	469	325			
	∆I ^c	207	368	323	460	320			
	⊿ <i>1</i> ^R	210	372	326	465	323			
Carbowax 20M	ΔΙ	308	541	357	559	420			
	∆I ^c	327	571	375	591	444			
	⊿ <i>I</i> ^R	327	571	375	591	444			
QF-1	ΔI	116	203	320	413	250			
	∆I ^c	109	195	314	407	241			
	∆I ^R	109	195	314	407	241			
DPAT	ΔI	430	859	606	761	632			
	∆I ^c	457	898	630	797	656			
	∆I ^R	457	897	629	797	656			
ВАТ	ΔI	404	1019	751	808	856			
	∆I ^c	430	1051	781	838	893			
	⊿ <i>1</i> ^R	430	1050	781	838	892			

CALCULATION OF MCREYNOLDS PHASE CONSTANTS AT 80.83C ACCORDING TO THE PROCEDURE OF ROHRSCHNEIDER

phases of different polarity. 1-Nitropropane, which can be considered representative of the properties of the first five McReynolds test solutes, is retained by gas-liquid partitioning on all phases while *n*-decane is retained by a mixed retention mechanism on many phases. The model proposed by Rohrschneider, expressed by eqn. 8, is fundamentally sound for predicting values of ΔI when retention of the *n*-alkanes and test solutes occurs solely by gas-liquid partitioning. It is not applicable to those situations where either the test solute, or more likely, the *n*-alkane retention index standards are retained predominantly by interfacial adsorption. Experimental values of ΔI on polar phases are unreliable with respect to the thermodynamic model of eqn. 8.

Eqn. 8 can be derived directly from the equations for a straight line from Fig. 1 and consequently any homologous series of retention index standards that obeys eqn. 2 could be substituted for the *n*-alkanes. Using the 2-alkanones, which are retained largely by partitioning on non-polar and polar phases, the limitation that eqn. 8 can be applied only to non-polar and moderately polar phases using the *n*-alkane retention index standards is removed, Table IV. There is excellent agreement between the values of ΔI^{C} and ΔI^{R} for all phases but on the other hand, if the phases are ranked in order of their ΔI^{C} values for their ability to interact with a given test solute there is

only poor agreement in order between the phases ranked on the scale determined with the 2-alkanone and *n*-alkane retention index standards. Whereas it might be reasonable to assume that a hypothetical *n*-alkane experiences the same magnitude of interactions in squalane and on the polar phase (as is implied in the derivation of eqn. 8) this would seem to be unrealistic for the 2-alkanones which have modest dipole moments (*ca.* 2–3 D) and a reasonable potential for significant induction, orientation, and solvent proton-donor interactions in the compared phases. In terms of eqn. 8 this difference is reflected in the different values of $(\Delta G_{K}^{*}X)^{*}$ since the values of $(\Delta G_{K}^{*}X)^{*}$ and $\Delta G_{K}^{*}(CH_{2})^{P}$ are not affected by the choice of homologous retention index standards provided that eqn. 2 is obeyed. The 2-alkanones are more sensible retention index standards than the *n*-alkanes for the accurate prediction of retention but should not be used for the specific application of determining selectivity phase constants.

Golovnya–Poole have equated the quantitative differences in stationary phase selectivity with the difference in the partial molar Gibbs free energy of solution of the test solute on a polar phase and on a reference phase exhibiting minimum selectivity as described by eqn. 6. As can be seen from Fig. 1 this approach differs significantly in the manner that the non-polar contribution to retention is estimated (it is reasonable to assume that the non-polar retention contribution includes contributions from induction as well as dispersion for the retention of polar test solutes). It has the further practical advantage that this approach is not limited by the problems associated with the use of the retention index system discussed above.

Golovnya and co-workers^{16,18,20,21} have derived several relationships between the retention index of a solute and solution thermodynamic parameters that can be used as the basis to derive a general equation relating Rohrschneider's ΔI parameter to

Fig. 2. Plot of V_{N}^{*}/V_{L} vs. $1/V_{L}$ for *n*-decane on a series of stationary phases of different polarity. The stationary phases are identified in Table I.

Fig. 3. Plot of V_{N}^{*}/V_{L} vs. $1/V_{L}$ for 1-nitropropane on a series of stationary phases of different polarity. The stationary phases are identified in Table I.

TABLE IV

CALCULATION OF MCREYNOLDS PHASE CONSTANTS AT 80.8 $^{\circ}\mathrm{C}$ USING 2-ALKANONES AS RETENTION INDEX STANDARDS

Stationary phase	Index difference	Test solute						
private	uyjerence	Benzene	B utanol	Nitropropane	Dioxane			
OV-17	ΔΙ	- 53	-8	76	19			
	∆I ^C	- 54	-5	75	15			
	<i>∆1</i> ^R	- 54	-5	75	15			
OV-105	ΔΙ	- 56	57	41	-14			
	⊿ / ℃	-60	52	41	-16			
	⊿ <i>1</i> ≉	-60	52	41	-15			
OV-330	ΔI	-60	121	139	28			
	ΔI ^C	-62	120	138	24			
	∆I ^R	-62	120	138	24			
OV-225	ΔI	-128	46	138	-2			
	∆I ^C	-125	40	136	-9			
	∆ <i>I</i> ^R	-125	40	136	-9			
Carbowax 20M	ΔΙ	- 56	187	204	63			
	∆I ^C	- 56	188	207	60			
	⊿ <i>1</i> ^R	- 56	188	207	60			
QF-I	ΔI	-206	-117	84	-73			
	∆I ^c	-204	-118	85	-76			
	∆I ^R	-204	-118	85	-76			
DPAT	ΔI	-191	243	143	21			
	∆I ^c	-177	247	148	14			
	∆I ^R	-177	247	149	14			
DEGS	ΔΙ	-142	202	222	135			
	Δſ ^c	-131	211	-31	143			
	⊿ <i>1</i> ^R	-131	211	-31	143			
TCEP	ΔΙ	- 194	124	262	99			
	⊿ <i>1</i> °	-194	125	-31	101			
	∆ <i>1</i> ^R	-194	125	-31	101			
OV- 275	ΔΙ	-175	135	277	84			
	ΔI ^C	-158	146	-36	113			
	⊿ <i>1</i> [®]	- 159	146	-36	114			

 $\partial (\Delta G_{K}^{o}X)_{SQ}^{p}$ defined by eqn. 6. The retention index of a solute can be defined in terms of the gas-liquid partition coefficient of solute X and the retention index standards by eqn. 3. Substituting eqn. 2 into eqn. 3 and rearranging gives eqn. 9:

$$I^{X} = 100n + \frac{100}{B} (\log K_{L}^{X} - A - Bn)$$
(9)

which after simplification gives

$$\log K_{\rm L}^{\rm X} = \frac{I^{\rm X}B}{100} + A \tag{10}$$

where A and B are the coefficients obtained by linear regression for the retention index standards defined by eqn. 2. The partial molar Gibbs free energy of solution for solute X is defined by eqn. 5, which after substituting for K_L^X from eqn. 10, gives

$$(\Delta G_{\rm K}^{\rm o} {\rm X})^{\rm P} = -2.3RT \frac{I_{\rm P}^{\rm X} B_{\rm P}}{100} + A_{\rm P}$$
(11)

and by similar reasoning for squalane

$$(\Delta G_{\rm K}^{\rm o} {\rm X})^{\rm SQ} = -2.3RT \, \frac{I_{\rm SQ}^{\rm X} {\rm B}_{\rm SQ}}{100} + A_{\rm SQ} \tag{12}$$

Substituting eqns. 11 and 12 into eqn. 6 and rearranging gives

$$\partial (\Delta G_{\rm K}^{\rm o} {\rm X})_{\rm SQ}^{\rm p} = \frac{2.3RT}{100} \left(I_{\rm SQ}^{\rm X} B_{\rm SQ} - I_{\rm P}^{\rm X} B_{\rm P} \right) + 2.3RT (A_{\rm SQ} - A_{\rm P})$$
(13)

Substituting for I_P^X from eqn. 4 into eqn. 13 gives

$$\partial (\Delta G_{\rm K}^{\rm o} {\rm X})_{\rm SQ}^{\rm p} = \frac{2.3RT}{100} \left[I_{\rm SQ}^{\rm X} (B_{\rm SQ} - B_{\rm P}) - \Delta I^{\rm X} B_{\rm P} \right] + 2.3RT (A_{\rm SQ} - A_{\rm P})$$
(14)

The correctness of eqns. 13 or 14 can be tested using the values of *I*, ΔI , A and *B* given in Tables II–IV to calculate $\partial (\Delta G_{K}^{\circ}X)_{SQ}^{P}$ which can be compared to the experimental values of $\partial (\Delta G_{K}^{\circ}X)_{SQ}^{P}$. Table V, obtained from the gas–liquid partition coefficients. The

Fig. 4. Frequency distribution of the relative error in $\partial (\Delta G_k^{\alpha} X)_{SQ}^p$ determined by eqn. 13 using *n*-alkanes and 2-alkanones as retention index standards and the experimental value determined from K_L^{α} for the McReynolds test solutes.

agreement is very good as can be seen from the error frequency distribution in Fig. 4. For the *n*-alkane retention index standards of 89 measurements only seven show a relative error greater than 6% and most of these are associated with benzene and other poorly retained solutes that have a greater uncertainty associated with their determination (Table I). Eqns. 13 and 14 are correct for any homologous series that obeys eqn. 2 and substituting the appropriate values for the 2-alkanones gives a similar goodness of fit to the *n*-alkanes.

Eqn. 14 reveals that there is no simple dependence of $\partial (\Delta G_{K}^{\circ}X)_{SQ}^{P}$ on ΔI^{X} and the magnitude of $\partial (\Delta G_{K}^{\circ}X)_{SQ}^{P}$ changes with the phase specific properties represented by the coefficients A and B as well as ΔI^{X} . Thus, one can expect no general correlation in the ranking of stationary phases to interact with a particular test solute and the two selectivity scales should be considered as independent and different from each other.

In earlier studies a strong correlation between $\Delta I^{\rm C}$ for the McReynolds test solutes and the partial molar Gibbs free energy of solution for a methylene group on a wide range of conventional and liquid organic salt phases has been reported^{10,14,15,17,22}. The selectivity index values for $\Delta I^{\rm C}$ and $\partial (\Delta G_{\rm K}^{\circ} X)_{\rm SQ}^{\rm P}$ for nitropropane are plotted against $B_{\rm P}$ in Fig. 5 ($B_{\rm P}$ is a measure of the solubility of the *n*-alkanes in the polar stationary phase, see eqn. 7). The value of the retention index difference corrected for interfacial adsorption is seen to vary linearly with $B_{\rm P}$ (except for OV-105 and QF-1) indicating that $\Delta I^{\rm C}$ is determined largely by the interactions of the *n*-alkanes with the stationary phase and to a lesser extent by selective interactions of the test solute with the phase. This is probably the reason why the magnitude of the McReynolds phase constants tend to increase monotonously with increasing phase polarity for all test solutes. The $\partial (\Delta G_{\rm K}^{\circ} X)_{\rm SQ}^{\rm P}$ scale shows no similar correlation with $B_{\rm P}$ which is in agreement with chemical intuition.

TABLE V

THERMODYNAMICALLY CALCULATED PHASE CONSTANTS DERIVED FROM THE PARTIAL MOLAR GIBBS FREE ENERGY OF SOLUTION AT 80.8° C

Test solutes are identified in Table I. $\partial (\Delta G_{K}^{\circ}X)_{SQ}^{P} = (\Delta G_{K}^{\circ}X)_{P} - (\Delta G_{K}^{\circ}X)_{SQ}$. Absolute values for squalane (kcal/mol); X' = -3.085; Y' = -2.717; Z' = -2.956; U' = -3.084; S' = -3.332; H' = -3.315; J' = -4.032; K' = -4.244; L' = -3.091; M' = -5.087.

Stationary phase	$\partial (\Delta G_{K}^{o}X)_{SQ}^{P} (cal/mol)$										
	X2'	Y2'	Z2'	U2'	S2'	H2'	J2'	K2'	L2'	M2'	
OV-17	28	&264	&242	-633	- 380	45	130	208	- 325	516	
OV-105	191	-421	-113	-316	-25	11	360	346	-28	622	
OV-330	-67	-1004	-358	-1033	-655	- 398	161	378	-479	821	
OV-225	110	-723	-461	-1087	- 566	-216	319	647	-421	1033	
Carbowax 20M	-133	-1272	- 373	-1259	880	-452	295	594	-630	1169	
QF-1	402	-65	499	- 860	-173	191	678	1007	156	1272	
DPAT	5	-1758	-683	-1252	_	-938	543	1212	- 729	1663	
DEGS	216	-1134	- 264	- 1076	_	- 360	871	1272	-748	1956	
BAT	537	-1843	-779	934		-1018	1006	1684	-1129	2017	
sBAT	524	- 1976	-921	-1043	-	-1124	1004	1675	-1283	2152	
TCEP	170	-1023	-483	-1340	-920	-156	853	1338	-777	2121	
OV-275	478	- 589	- 50	-953	-475	380	1289	1969	- 309	2539	

Fig. 5. Plot of $\partial (\Delta G_{\mathbf{K}}^{\circ} \mathbf{X})_{SQ}^{\mathbf{P}}$ (\mathcal{Y}_{s}) and $\Delta I^{\mathbf{C}}$ (\Box) against the slope of the plot of eqn. 2 for nitropropane. There is a linear correlation for $\Delta I^{\mathbf{C}}$ and no correlation for $\partial (\Delta G_{\mathbf{K}}^{\circ} \mathbf{X})_{SQ}^{\mathbf{P}}$.

The data presented in this paper supports the view that the Rohrschneider-McReynolds system for phase constants should be abandoned as it suffers from experimental and theoretical deficiencies. Mixed retention mechanisms make data for polar phases spurious. The phase constants are determined largely by the character of the retention index standards than by specific interactions with the test solute. Since the Gibbs free energy per index unit varies from one phase to another (typically from 1 to 6 cal/mol) it cannot be assumed that a hypothetical hydrocarbon co-eluting with the test solute on squalane should have the same free energy on a polar phase. These inconsistancies are absent from the $\partial (\Delta G_K^{\alpha} X)_{SQ}^{P}$ scale which is to be preferred on theoretical and practical grounds. A much larger data set for 35 common stationary phases is in preparation to make the $\partial (\Delta G_K^{\alpha} X)_{SQ}^{P}$ scale more useful and to permit studies of the correlation of this parameter with the phase structure.

ACKNOWLEDGEMENT

Acknowledgement is made to the donors of the Petroleum Research Fund administered by the American Chemical Society for support of this research.

REFERENCES

- 1 C. F. Poole and S. A. Schuette, *Contemporary Practice of Chromatography*, Elsevier, Amsterdam, 1984, p. 31.
- 2 C. F. Poole and S. K. Poole, Anal. Chim. Acta, 216 (1989) 109.
- 3 L. Rohrschneider, Adv. Chromatogr., 4 (1967) 333.

STATIONARY PHASE SELECTIVITY IN GC

- 4 L. Rohrschneider, J. Chromatogr. Sci., 11 (1973) 160.
- 5 W. O. McReynolds, J. Chromatogr. Sci., 8 (1970) 685.
- 6 W. R. Supina and L. P. Rose, J. Chromatogr. Sci., 8 (1970) 214.
- 7 A. Hartkopf, J. Chromatogr. Sci., 12 (1974) 113.
- 8 L. S. Ettre, Chromatographia, 7 (1974) 261.
- 9 J. K. Haken, Adv. Chromatogr., 14 (1976) 366.
- 10 S. K. Poole, B. R. Kersten, R. M. Pomaville and C. F. Poole, LC · GC, Mag. Liq. Gas Chromatogr., 6 (1988) 400.
- 11 C. F. Poole and S. K. Poole, Chem. Rev., 89 (1989) in press.
- 12 B. R. Kersten and C. F. Poole, J. Chromatogr., 399 (1987) 1.
- 13 B. R. Kersten, C. F. Poole and K. G. Furton, J. Chromatogr., 411 (1987) 43.
- 14 C. F. Poole, S. K. Poole, R. M. Pomaville and B. R. Kersten, J. High Resolut. Chromatogr. Chromatogr. Commun., 10 (1987) 670.
- 15 R. M. Pomaville and C. F. Poole, Anal. Chem., 60 (1988) 1103.
- 16 R. V. Golovnya and T. A. Misharina, J. High Resolut. Chromatogr. Chromatogr. Commun., 3 (1980) 51.
- 17 W. A. Aue and V. Paramasigamani, J. Chromatogr., 166 (1978) 253.
- 18 R. V. Golovnya and T. A. Misharina, Chromatographia, 10 (1977) 658.
- 19 B. R. Kersten and C. F. Poole, J. Chromatogr., 452 (1988) 191.
- 20 R. V. Golovnya and Yu. N. Arsenyev, Chromatographia, 4 (1971) 250.
- 21 R. V. Golovnya, Chromatographia, 12 (1979) 533.
- 22 M. Roth and J. Novák, J. Chromatogr., 234 (1982) 337.